Drought and fire stress influence seedling competition in oak forests: fine-root dynamics as indicator of adaptation strategies to climate change

Drought and fire stress influence seedling competition in oak forests: fine-root dynamics as indicator of adaptation strategies to climate change


  • Antonio Montagnoli Department of Biotechnologies and Life Sciences (DBSV), University of Insubria
  • Mattia Terzaghi Department of Biotechnologies and Life Sciences (DBSV), University of Insubria
  • Barbara Baesso Department of Biotechnologies and Life Sciences (DBSV), University of Insubria
  • Rosaria Santamaria Department of Biotechnologies and Life Sciences (DBSV), University of Insubria
  • Gabriella Stefania Scippa Department of Sciences and Technologies for Environment and Territory (DISTAT), University of Molise
  • Donato Chiatante Department of Biotechnologies and Life Sciences (DBSV), University of Insubria




Fine root, adaptation, management, Oak, seedlings


Increased summer drought and wildfires as a consequence of continuing climate change are expected to lead to disturbance of Mediterranean ecosystems. Seedlings recruitment is sensitive to both stresses and, therefore, any adaptation and restoration strategy devised to protect these forests should take into account a careful study on their effects on seedling development. As a substantial fraction of net primary productivity of forested ecosystems is channelled in the belowground compartments, the knowledge of how roots behave under stressful conditions becomes of primary importance to select the right management strategy to be implemented. This work tries to enlighten the events occurring in the fine root portion of the root system in young seedlings of three co-existing oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) under controlled conditions. We have made a comparative analysis of the effect of these two stresses, alone or in combination, with the aim to evaluate the tolerance level of these seedlings and, therefore, to obtain an indication of their recruitment potential in the field. The parameters investigated were biomass and a number of morphological traits. Data obtained suggest that a decrease in diameter could be part of a tolerance strategy in all three oaks tested together with a reduction of root length. In addition, tolerance to water shortage could require a reduction of carbon allocated belowground, in particular in the very fine roots, which leads to an overall reduction of the root system dimension. Q. trojana seedlings seem to be the fastest in resuming growth after stress interruption but a good recovery was also found for the remaining two oak species. Although our study provides interesting information regarding a possible tolerance strategy taking place in the fine root compartment when seedlings of these three oak species undergo water stress and fire treatment, more information is needed before any suggestion can be made as to which species would be best suited to make these forests more resistant to global changes.


Download data is not yet available.

Author Biography

Antonio Montagnoli, Department of Biotechnologies and Life Sciences (DBSV), University of Insubria

Department of Biotechnology and Life Science


Barlow PW (1997) Stem cells and founder zones in plants, particularly their roots. In: Potten CS (ed) Stem cells. Academic Press, London, pp 29–57. http://dx.doi.org/10.1016/b978-012563455-7/50003-9 DOI: https://doi.org/10.1016/B978-012563455-7/50003-9

Barlow PW (2010) Plastic, inquisitive roots and intelligent plants in the light of some new vistas in plant biology. Plant Biosyst 144:396–407. http://dx.doi.org/10.1080/11263501003718570 DOI: https://doi.org/10.1080/11263501003718570

Barney CW (1951) Effects of soil temperature and light intensity on root growth of loblolly pine seedlings. Plant Physiol 26:146–163. http://dx.doi.org/10.1104/pp.26.1.146 DOI: https://doi.org/10.1104/pp.26.1.146

Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of Eastern Canada. Can J For Res 29:260–273. http://dx.doi.org/10.1139/x98-206 DOI: https://doi.org/10.1139/x98-206

Begni G, Darras S, Hoepffner M, Pesin E, Tourre Y (2001) The present status of knowledge on global climatic change; its regional aspects and impacts in the Mediterranean region. A scientific and strategic report to Blue Plan. Medias France Groupement pour le développement de la recherche sur l'environnement global notamment dans le bassin Méditerranéen et l'Afrique subtropicale. Toulouse, France, 7 December 2001

Bevington KB, Castle WS (1985) Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature, and soil water content. J Am Soc Hortic Sci 110:840-845. DOI: https://doi.org/10.21273/JASHS.110.6.840

Bianco P, Brullo S, Minissale P, Signorello P, Spampinato G (1998) Considerazioni fitosociologiche sui boschi a Quercus trojanae Webb della Puglia (Italia Meridionale). Studia Geobotanica 16:33-38.

Burke MK, Raynal DJ (1994) Fine root growth phenology, production and turnover in a northern hardwood forest ecosystem. Plant Soil 162:135-146. http://dx.doi.org/10.1007/BF01416099 DOI: https://doi.org/10.1007/BF01416099

Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423-447. http://dx.doi.org/10.1146/annurev.es.21.110190.002231 DOI: https://doi.org/10.1146/annurev.es.21.110190.002231

Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol 30:239–264. http://dx.doi.org/10.1071/FP02076 DOI: https://doi.org/10.1071/FP02076

Chaves MM, Pereira JS, Maroco JP, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916. http://dx.doi.org/10.1093/aob/mcf105 DOI: https://doi.org/10.1093/aob/mcf105

Chiatante D, Di Iorio A, Maiuro L, Scippa SG (1999) Effect of water stress on root meristems in woody and herbaceous plants during the first stage of development. Plant Soil 217:159-172. http://dx.doi.org/10.1023/A:1004691705048 DOI: https://doi.org/10.1023/A:1004691705048

Chiatante D, Di Iorio A, Scippa GS (2005) Root responses of Quercus ilex L. seedlings to drought and fire. Plant Biosyst 139:198-208. http://dx.doi.org/10.1080/11263500500160591 DOI: https://doi.org/10.1080/11263500500160591

Chiatante D, Di Iorio A, Sciandra S, Scippa GS, Mazzoleni S (2006) Effect of drought and fire on root development in Quercus pubescens Willd. and Fraxinus ornus L. seedlings. Environ Exp Bot 56:190-197. http://dx.doi.org/10.1016/j.envexpbot.2005.01.014 DOI: https://doi.org/10.1016/j.envexpbot.2005.01.014

Chiatante D, Tognetti R, Scippa GS, Congiu T, Baesso B, Terzaghi M, Montagnoli A (2015) Interspecific variation in functional traits of oak seedlings (Quercus ilex, Quercus trojana, Quercus virgiliana) grown under artificial drought and fire conditions. J Plant Res 128:595-611. http://dx.doi.org/10.1007/s10265-015-0729-4 DOI: https://doi.org/10.1007/s10265-015-0729-4

Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig D (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442. http://dx.doi.org/10.3389/fpls.2013.00442 DOI: https://doi.org/10.3389/fpls.2013.00442

Comas LH, Bouma TJ, Eissenstat DM (2002) Linking root traits to potential growth rate in six temperate tree species. Oecologia 132:34-43. http://dx.doi.org/10.1007/s00442-002-0922-8 DOI: https://doi.org/10.1007/s00442-002-0922-8

Comas LH, Eissenstat DM (2004) Linking root traits to maximum potential growth rate among eleven mature temperate tree species. Funct Ecol 18:388-397. http://dx.doi.org/10.1111/j.0269-8463.2004.00835.x DOI: https://doi.org/10.1111/j.0269-8463.2004.00835.x

Cudlin P, Kieliszewska-Rokicka B, Rudawska M, Grebenc T, Alberton O, Lehto T, Bakker MR, Børja I, Konopka B, Leski T, Kraigher H, Kuyper TW (2007) Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosystems 141:406–425. http://dx.doi.org/10.1080/11263500701626028 DOI: https://doi.org/10.1080/11263500701626028

Curt T, Prevosto B (2003) Rooting strategy of naturally regenerated beech in silver birch and Scots pine woodlands. Plant Soil 255:265–279. http://dx.doi.org/10.1023/A:1026132021506 DOI: https://doi.org/10.1023/A:1026132021506

De Luis M, Gonzalez-Hidalgo JC, Raventos J (2003) Effects of fire and torrential rainfall on erosion in a Mediterranean gorse community. Land Degrad Develop 14:203–213. http://dx.doi.org/10.1002/ldr.547 DOI: https://doi.org/10.1002/ldr.547

Deans JD, Ford ED (1986) Seasonal patterns of radial root growth and starch dynamics in plantation-grown Sitka spruce trees of different ages. Tree Physiol 1:241-251. http://dx.doi.org/10.1093/treephys/1.3.241 DOI: https://doi.org/10.1093/treephys/1.3.241

Di Iorio A, Giacomuzzi V, Chiatante D (2015) Acclimation of fine root respiration to soil warming involves starch deposition in very fine and fine roots: a case study in Fagus sylvatica saplings. Physiologia Plantarum. DOI: https://doi.org/10.1111/ppl.12363

Di Iorio A, Montagnoli A, Scippa GS, Chiatante D (2011) Fine root growth of Quercus pubescens seedlings after drought stress and fire disturbance. Environ Exp Bot 74:272-279. http://dx.doi.org/10.1016/j.envexpbot.2011.06.009 DOI: https://doi.org/10.1016/j.envexpbot.2011.06.009

Dreesen FE, De Boecka HJ, Janssensa IA, Nijs I (2012) Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ Exp Bot 79:21–30. http://dx.doi.org/10.1016/j.envexpbot.2012.01.005 DOI: https://doi.org/10.1016/j.envexpbot.2012.01.005

Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–62. http://dx.doi.org/10.1016/S0065-2504(08)60005-7 DOI: https://doi.org/10.1016/S0065-2504(08)60005-7

Faria T, Silvério D, Breia E, Cabral R, Abadia A, Abadia J, Pereira JS, Chaves MM (1998) Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiol Plant 102:419–428. http://dx.doi.org/10.1034/j.1399-3054.1998.1020310.x DOI: https://doi.org/10.1034/j.1399-3054.1998.1020310.x

Frelich LE, Reich PB (1998) Disturbance severity and threshold responses in the boreal forest. Conserv Ecol 2: 7. DOI: https://doi.org/10.5751/ES-00051-020207

Gauthier S, Vaillancourt MA, Leduc A, De Grandpré L, Kneeshaw D, Morin H, Drapeau P, Bergeron Y (2009). Ecosystem Management in the boreal forest. Presses de l'Université du Québec, Québec, Can.

Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90-104. http://dx.doi.org/10.1016/j.gloplacha.2007.09.005 DOI: https://doi.org/10.1016/j.gloplacha.2007.09.005

Guo D, Mitchell RJ, Withington JM, Fan P-P, Hendricks JJ (2008) Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J Ecol 96:737-745. http://dx.doi.org/10.1111/j.1365-2745.2008.01385.x DOI: https://doi.org/10.1111/j.1365-2745.2008.01385.x

Helmisaari HS, Makkonen K, Kellomäki S, Valtonen E, Mälkönen E (2002) Below- and above ground biomass, production and nitrogen use in Scots pine stands in eastern Finland. For Ecol Manag 165:317-326. http://dx.doi.org/10.1016/S0378-1127(01)00648-X DOI: https://doi.org/10.1016/S0378-1127(01)00648-X

Hendrick RL, Pregitzer KS (1992) Spatial variation in root distribution and growth associated with minirhizotrons. Plant Soil 143:283-288. http://dx.doi.org/10.1007/BF00007884 DOI: https://doi.org/10.1007/BF00007884

Joslin JD, Henderson GS (1987) Organic matter and nutrients associated with fine root turnover in a white oak stand. For Sci 33:330-346.

Joslin JD, Wolfe MH, Hanson PJ (2000) Effects of altered water regimes on forest root systems. New Phytol 147:117-129. http://dx.doi.org/10.1046/j.1469-8137.2000.00692.x DOI: https://doi.org/10.1046/j.1469-8137.2000.00692.x

Kaspar TC, Bland WL (1992) Soil temperature and root growth. Soil Sci 154: 290-299. http://dx.doi.org/10.1097/00010694-199210000-00005 DOI: https://doi.org/10.1097/00010694-199210000-00005

King JS, Pregitzer KS, Zak DR (1999) Clonal variation in above- and belowground growth responses of Populus tremuloides Michaux: influence of soil warming and nutrient availability. Plant Soil 217:119-130. http://dx.doi.org/10.1023/A:1004560311563 DOI: https://doi.org/10.1007/978-94-017-3469-1_14

Kuhns MR, Garrett HE, Teskey RO, Hinckley TM (1985) Root growth of black walnut trees related to soil temperature, soil water potential, and leaf water potential. For Sci 31: 617-630.

Larson MM (1970) Root regeneration and early growth of red oak seedlings: influence of soil temperature. For sci 16:442-446.

Lieffers VJ, Rothwell RL (1986) Effects of depth of water table and substrate temperature on root and top growth of Picea mariana and Larix laricina seedlings. Can J For Res 16:1201-1206. http://dx.doi.org/10.1139/x86-214 DOI: https://doi.org/10.1139/x86-214

Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez- Cortina R (2009) Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Global Change Biol 15:2163-2175. http://dx.doi.org/10.1111/j.1365-2486.2009.01852.x DOI: https://doi.org/10.1111/j.1365-2486.2009.01852.x

Lloret F, Pe-uelas J, Ogaya R (2004) Establishment of co-existing Mediterranean tree species under a varying soil moisture regime. J Veg Sci 15:237–244. http://dx.doi.org/10.1111/j.1654-1103.2004.tb02258.x DOI: https://doi.org/10.1111/j.1654-1103.2004.tb02258.x

Mainero R, Kazda M, Häberle KH, Nikolova PS, Matyssek R (2009) Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations. Environ Poll 157:2638-2644. http://dx.doi.org/10.1016/j.envpol.2009.05.006 DOI: https://doi.org/10.1016/j.envpol.2009.05.006

Majdi K, Pregitzer KS, Moren AS, Nylund JE, Agren GI (2005) Measuring fine-root turnover in forest ecosystems. Plant Soil 276:1-8. http://dx.doi.org/10.1007/s11104-005-3104-8 DOI: https://doi.org/10.1007/s11104-005-3104-8

Manes F, Vitale M, Donato E, Giannini M, Puppi G (2006) Different ability of three Mediterranean oak species to tolerate progressive water stress. Photosynthetica 44:387-393. http://dx.doi.org/10.1007/s11099-006-0040-7 DOI: https://doi.org/10.1007/s11099-006-0040-7

Margolis HA, Brand DG (1990) An ecophysiological basis for understanding plantation establishment. Can J For Res 20:375–390. http://dx.doi.org/10.1139/x90-056 DOI: https://doi.org/10.1139/x90-056

Martínez-Vilalta J, Pi-ol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manage 161:247-256. http://dx.doi.org/10.1016/S0378-1127(01)00495-9 DOI: https://doi.org/10.1016/S0378-1127(01)00495-9

Matías L, Quero JL, Zamora R, Castro J (2012) Evidence for plant traits driving specific drought resistance. A community field experiment. Environ Exp Bot 81:55-61. http://dx.doi.org/10.1016/j.envexpbot.2012.03.002 DOI: https://doi.org/10.1016/j.envexpbot.2012.03.002

McClaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481-1490. http://dx.doi.org/10.2307/1938874 DOI: https://doi.org/10.2307/1938874

McMichael BL, Burke JJ (1998) Soil Temperature and Root Growth. Hortic Sci 33:947-951. DOI: https://doi.org/10.21273/HORTSCI.33.6.947

Merrit C (1968) Effect of environment and heredity on the root growth pattern of red pine. Ecology 49:34-40. http://dx.doi.org/10.2307/1933558 DOI: https://doi.org/10.2307/1933558

Metcalfe D, Meir P, Aragão LEOC, Da Costa ACL, Braga AP, Gonçalves PHL, De Athaydes Silva J Jr, De Almeida SS, Dawson LA, Malhi Y, Williams M (2008) The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311:189-199. http://dx.doi.org/10.1007/s11104-008-9670-9 DOI: https://doi.org/10.1007/s11104-008-9670-9

Montagnoli A, Di Iorio A, Terzaghi M, Trupiano D, Scippa GS, Chiatante D (2014) Influence of soil temperature and water content on fine root seasonal growth of European beech natural forest in Southern Alps, Italy. Eur J For Res. http://dx.doi.org/10.1007/s10342-014-0814-6 DOI: https://doi.org/10.1007/s10342-014-0814-6

Montagnoli A, Terzaghi M, Di Iorio A, Scippa GS, Chiatante D (2012) Fine-root morphological and growth traits in a Turkey oak stand in relation to seasonal changes in soil moisture in the southern Apennines, Italy. Ecol Res 27:725-733. http://dx.doi.org/10.1007/s11284-012-0981-1 DOI: https://doi.org/10.1007/s11284-012-0981-1

Moya D, Espelta JM, Lopez-Serrano FR, Eugenio M, De Las Heras J (2008) Natural post-fire dynamics and serotiny in 10-year-old Pinus halepensis Mill. stands along a geographic gradient. Int J Wild land Fire 17:287–292. http://dx.doi.org/10.1071/WF06121 DOI: https://doi.org/10.1071/WF06121

Nardini A, Tyree MT (1999) Root and shoot hydraulic conductance of seven Quercus species. Ann For Sci 56:371-377. http://dx.doi.org/10.1051/forest:19990502 DOI: https://doi.org/10.1051/forest:19990502

Neilson RP, Wullstein LH (1985) Comparative drought physiology and biogeography of Quercus-Gambelii and Quercus-Turbinella in relation to seedling drought response and atmospheric flow structure. Am Midl Nat 114:259-271. http://dx.doi.org/10.2307/2425601 DOI: https://doi.org/10.2307/2425601

Ostonen I, Helmisaari H-S, Borken W, Tedersoo L, Kukumagi M, Bahram M, Lindroos AJ, Nojd P, Uri V, Merila P, Asi E, Lõhmus K (2011) Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob Change Biol 17:3620-3632. http://dx.doi.org/10.1111/j.1365-2486.2011.02501.x DOI: https://doi.org/10.1111/j.1365-2486.2011.02501.x

Ostonen I, Puttsepp U, Biel C, Alberton O, Bakker MR, Lohmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426-442. http://dx.doi.org/10.1080/11263500701626069 DOI: https://doi.org/10.1080/11263500701626069

Ozturk M, Dogan Y, Sakcali S, Doulis A, Karam F (2010) Ecophysiological responses of some maquis (Ceratonia siliqua L., Olea oleaster Hoffm. and Link, Pistacia lentiscus and Quercus coccifera L.) plant species to drought in the east Mediterranean ecosystem. J Environ Biol 31:233-245.

Pe-uelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biol 8:531-544. http://dx.doi.org/10.1046/j.1365-2486.2002.00489.x DOI: https://doi.org/10.1046/j.1365-2486.2002.00489.x

Pereira JS, David JS, David TS, Caldeira MC, Chaves MM (2004) Carbon and water fluxes in Mediterranean-type ecosystems: constraints and adaptations. Prog Bot 65:467-498. http://dx.doi.org/10.1007/978-3-642-18819-0_19 DOI: https://doi.org/10.1007/978-3-642-18819-0_19

Pereira JS, Mateus JA, Aires LM (2007) Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems. The effect of drought. Biogeosciences 4:791-802. http://dx.doi.org/10.5194/bg-4-791-2007 DOI: https://doi.org/10.5194/bg-4-791-2007

Pi-ol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345-357. http://dx.doi.org/10.1023/A:1005316632105 DOI: https://doi.org/10.1023/A:1005316632105

Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30-50. http://dx.doi.org/10.1111/j.1469-8137.2011.03952.x DOI: https://doi.org/10.1111/j.1469-8137.2011.03952.x

Pregitzer KS, King JS, Burton AJ, Brown SE (2000) Responses of tree roots to temperature. New Phytol 147:105-115. http://dx.doi.org/10.1046/j.1469-8137.2000.00689.x DOI: https://doi.org/10.1046/j.1469-8137.2000.00689.x

Qaderi MM, Kurepin LV, Reid DM (2012) Effects of temperature and watering regime on growth, gas exchange and abscisic acid content of canola (Brassica napus) seedlings. Environ Exp Bot 75:107-113. http://dx.doi.org/10.1016/j.envexpbot.2011.09.003 DOI: https://doi.org/10.1016/j.envexpbot.2011.09.003

Rewald B, Ephrath JE, Rachmilevitch S (2011) A root is a root is a root? Water uptake rates of citrus root orders. Plant Cell Environ 34:33-42. http://dx.doi.org/10.1111/j.1365-3040.2010.02223.x DOI: https://doi.org/10.1111/j.1365-3040.2010.02223.x

Sabaté S, Gracia CA, Sánchez A (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manage 162: 23-37. http://dx.doi.org/10.1016/S0378-1127(02)00048-8 DOI: https://doi.org/10.1016/S0378-1127(02)00048-8

Sanchez-Humanes B, Espelta JM (2011) Increased drought reduces acorn production in Quercus ilex coppices: thinning mitigates this effect but only in the short term. Forestry 84: 73-82. http://dx.doi.org/10.1093/forestry/cpq045 DOI: https://doi.org/10.1093/forestry/cpq045

Scarascia-Mugnozza G, Oswald H, Piussi P, Kalliopi R (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manage 132: 97-109. http://dx.doi.org/10.1016/S0378-1127(00)00383-2 DOI: https://doi.org/10.1016/S0378-1127(00)00383-2

Scippa GS, Di Michele M, Di Iorio A, Costa A, Lasserre B, Chiatante D (2006) The response of Spartium junceum roots to slope: anchorage and gene factors Annals of botany 97: 857-866. http://dx.doi.org/10.1093/aob/mcj603 DOI: https://doi.org/10.1093/aob/mcj603

Stanturf JA, Brian J. Palik B, Dumroese RK (2014) Contemporary forest restoration: a review emphasizing function. Forest Ecol Manag 331: 292-323. http://dx.doi.org/10.1016/j.foreco.2014.07.029 DOI: https://doi.org/10.1016/j.foreco.2014.07.029

Steele SJ, Gower ST, Vogel JG, Norman JM (1997) Root mass, net primary production and turnover in aspen, jack pine, and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiol 17: 577-587. http://dx.doi.org/10.1093/treephys/17.8-9.577 DOI: https://doi.org/10.1093/treephys/17.8-9.577

Teskey RO, Hinckley TM (1981) Influence of temperature and water potential on root growth of white oak. Physiol Plant 52: 363-369. http://dx.doi.org/10.1111/j.1399-3054.1981.tb06055.x DOI: https://doi.org/10.1111/j.1399-3054.1981.tb06055.x

Thomas FM, Gausling T (2000) Morphological and physiological responses of oak seedlings (Quercus petraea and Quercus robur) to moderate drought. Ann For Sci 57: 325-333. http://dx.doi.org/10.1051/forest:2000123 DOI: https://doi.org/10.1051/forest:2000123

Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest resilience, biodiversity and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series no. 43, 67 pages.

Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT, Yavitt JB (2003) Environmental control of fine root dynamics in a northern hardwood forest. Glob Change Biol 9: 670-679. http://dx.doi.org/10.1046/j.1365-2486.2003.00622.x DOI: https://doi.org/10.1046/j.1365-2486.2003.00622.x

Tognetti R, Longobucco A, Raschi A (1999) Seasonal embolism and xylem vulnerability in deciduous and evergreen Mediterranean trees influenced by proximity to a carbon dioxide spring. Tree Physiol 19:271-277. http://dx.doi.org/10.1093/treephys/19.4-5.271 DOI: https://doi.org/10.1093/treephys/19.4-5.271

Tognetti R, Raschi A, Jones MB (2000) Seasonal patterns of tissue water relations in three Mediterranean shrubs co-occurring at a natural CO2 spring. Plant Cell Environ 23: 1341-1351. http://dx.doi.org/10.1046/j.1365-3040.2000.00645.x DOI: https://doi.org/10.1046/j.1365-3040.2000.00645.x

Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrin E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54: 2015-2024. http://dx.doi.org/10.1093/jxb/erg221 DOI: https://doi.org/10.1093/jxb/erg221

Vilagrosa A, Chirino E, Peguero JJ, Barigah TS, Cochard H, Gil-Pelegrin E (2012) Xylem cavitation and embolism in plants living in water-limited ecosystems. In: Aroca R (ed) Plant responses to drought stress. Springer-Verlag, Berlin, pp 63-109. http://dx.doi.org/10.1007/978-3-642-32653-0_3 DOI: https://doi.org/10.1007/978-3-642-32653-0_3

Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water table manipulations. Ecology 81: 3464-3478. http://dx.doi.org/10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2

Wilcox H-E, Ganmore-Neumann R (1975) Effects of Temperature on Root Morphology and ectendomycorrhizal development in Pinus resinosa Ait. Can J For Res 5: 171-175. http://dx.doi.org/10.1139/x75-024 DOI: https://doi.org/10.1139/x75-024

Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparisons of structure and life span in roots and leaves among temperate trees. Ecol Monogr 76: 381-397. http://dx.doi.org/10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2

Xia MX, Guo DL, Pregitzer KS (2010) Ephemeral root modules in Fraxinus mandshurica. New Phytol 188: 1065-1074. http://dx.doi.org/10.1111/j.1469-8137.2010.03423.x DOI: https://doi.org/10.1111/j.1469-8137.2010.03423.x

Xoplaki E, Gonzalez-Rouco ÆJF, Luterbacher ÆJ, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63-78. http://dx.doi.org/10.1007/s00382-004-0422-0 DOI: https://doi.org/10.1007/s00382-004-0422-0

Zobel RW, Waisel Y (2010) A plant root system architectural taxonomy: a framework for root nomenclature. Plant Biosyst 144: 507-512. http://dx.doi.org/10.1080/11263501003764483 DOI: https://doi.org/10.1080/11263501003764483




How to Cite

Montagnoli, Antonio, Mattia Terzaghi, Barbara Baesso, Rosaria Santamaria, Gabriella Stefania Scippa, and Donato Chiatante. “Drought and Fire Stress Influence Seedling Competition in Oak Forests: Fine-Root Dynamics As Indicator of Adaptation Strategies to Climate Change”. REFORESTA 1, no. 1 (June 5, 2016): 86–105. Accessed June 12, 2024. https://www.reforestationchallenges.org/REFOR/index.php/REFOR/article/view/5.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.